Q.P. Code: 16EC402

Time: 3 hours

Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech II Year I Semester Supplementary Examinations Nov/Dec 2019 SWITCHING THEORY AND LOGIC DESIGN

(Electronics & Communication Engineering)

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

- a Reduce the following Boolean expressions using Boolean algebra. **6M** 1
 - i) (X'Y'+Z)'+Z+XY+WZ
 - ii) A'B (D'+C'D)+ B (A+A'CD)
 - iii) (A'+C)(A'+C')(A+B+C'D)
 - **b** Convert the given decimal number 351 to binary, octal, hexadecimal and BCD **6M** equivalent.

OR

- a State Duality theorem. List the Boolean laws and their Duals.
 - **b** Solve for x **6M**
 - i) $(257)_8 = (x)_2$
 - ii) $(BC2)_{16} = (x)_8$
 - iii) $(33)_{10} = (201)_x$

UNIT-II

- a Simplify the Boolean function $F(A,B,C,D)=\sum_{i=0}^{\infty}(1,3,7,11,15)+d(0,2,5)$ using map **6M** method.
 - **b** Implement the given Boolean function Y= (AB'+A'B) (C+D') using NOR gates **6M** only.

UNIT-III

Simplify the following Boolean function using Tabulation method. $Y(A,B,C,D) = \Sigma(1,3,5,8,9,11,15)$

a Explain Carry Look Ahead Adder circuit with the help of logic diagram **b** Realize a 2-bit comparator using logic gates.

4M

12M

8M

6M

6M

a What is encoder? Design octal to binary encoder.

b Design a 16 line to 1 line multiplexer using 4 line to 1 line multiplexer.

6M

UNIT-IV

a Design D Flip Flop by using SR Flip Flop and draw the timing diagram

6M

b Write the differences between combinational and sequential circuits.

6M

a With a neat sketch explain MOD 6 Johnson counter using D Flip-flop.

6M

b What is race around problem in JK Flip-Flop? Explain how it is eliminated in **6M** master slave JK Flop-Flop.

UNIT-V

9 a Implement the following Boolean function using PLA.

8M

(i) $F(w,x,y,z) = \Sigma m(0,1,3,5,9,13)$

(ii) F(w,x,y,z)) = $\Sigma m(0,2,4,5,7,9,11,15)$

b Explain about memory decoding.

4M

OR

- **10** a Given the 4-bit data word 1101, generate the composite word for the hamming code that corrects and detects single errors.
 - **b** Differentiate among ROM, PROM, DROM, EPROM, EEPROM, RAM.

6M

*** END ***